Effect of semisynthetic extracellular matrix-like hydrogel containing hepatocyte growth factor on repair of femoral neck defect in rabbits.
نویسندگان
چکیده
Using tissue engineering technology research to develop organized artificial bone, then repair bone defect. This work aims to investigate the role of semisynthetic extracellular matrix-like hydrogel (sECMH) containing hepatocyte growth factor (HGF) on repair of femoral neck defect in rabbits. 18 New Zealand rabbits were used in this study. According to autologous paired comparison method, the left and right sides of rabbit were used as control and experimental side, respectively. The models of bilateral femoral neck bone defect were established. In experimental side, sECMH containing HGF was implanted in the defect area. In control side, no material was implanted in the defect area. At the 2nd, 4th and 8th week after surgery, the gross observation, histological examination and molybdenum target (Mo-target) X-ray examination were performed on the specimens to study the repair of femoral neck defect. In gross observation, there was no macroscopic difference of femoral neck specimen between the 2nd and 4th postoperative week. At the 8th week, the defect orifice was closed with immature cortical bone, with unblocked marrow cavity. HE staining results showed that, at the 4th week, there were more new vessels in defect area of experimental side, compared with control side. At the 8th week, in experimental side there was immature cortical bone connecting the fracture end in defect area, with visible bone marrow cells. Mo-target X-ray examination found that, at the 8th week, the bone tissue repair in experimental side was better than control side. As a new drug delivery system, sECMH containing HGF has good application prospect in bone tissue repair.
منابع مشابه
Partial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملAutocrine-controlled formation and function of tissue-like aggregates by primary hepatocytes in micropatterned hydrogel arrays.
The liver carries out a variety of essential functions regulated in part by autocrine signaling, including hepatocyte-produced growth factors and extracellular matrix (ECM). The local concentrations of autocrine factors are governed by a balance between receptor-mediated binding at the cell surface and diffusion into the local matrix and are thus expected to be influenced by the dimensionality ...
متن کاملThe Effect of Laminin and Gelatin Extracellular Matrix on Short-Term Cultivation of Neonate Mouse Spermatogonial Stem Cells
Purpose: To compare the effect of laminin and gelatin on short-term culture of spermatogonial stem cells (SSCs) from neonatal mouse testes.Materials and Methods: Cell suspension containing SSCs were isolated from testes of 6 day-old mice and cultured in the presence of Glial-derived neuroterophic factor (GDNF), Epidermal Growth Factor (EGF) and Basic Fibroblastic Growth Factor (bFGF) on laminin...
متن کاملHistomorphological Evaluation of Transcutaneous Electrical Neural Stimulation in Healing of Experimentally Induced Partial Hip Joint Cartilage Defect in Rabbit
Objective- To determine the effect of the transcutaneous electrical neural stimulation on healing of hip joint cartilage defect in rabbit.Design- Experimental in vivo study.Animals- 12 adult New Zealand rabbits were used.Procedures- Under effective the right femoral head was subluxated and the maximum accessible cartilage was denuded up to subchondral bone using dental bit in each rabbit. Then ...
متن کاملSimultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system.
Subchondral defect repair is a multitask challenge requiring the simultaneous regeneration of cartilage and bone. Herein, we describe the features of a hydrogel system designed to simultaneously induce the endogenous regeneration of hyaline cartilage and subchondral bone. The system was constructed as two layers, spatially presenting the chondroinductive transforming growth factor-β1 (TGF-β1) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2015